Optimum Design of a Ceramic Tensile Creep Specimen Using a Finite Element Method

نویسندگان

  • Z. Wang
  • C. K. Chiang
  • T.-J. Chuang
چکیده

An optimization procedure for designing a ceramic tensile creep specimen to minimize stress concentration is carried out using a finite element method. The effect of pin loading and the specimen geometry are considered in the stress distribution calculations. A growing contact zone between the pin and the specimen has been incorporated into the problem solution scheme as the load is increased to its full value. The optimization procedures are performed for the specimen, and all design variables including pinhole location and pinhole diameter, head width, neck radius, and gauge length are determined based on a set of constraints imposed on the problem. In addition, for the purpose of assessing the possibility of delayed failure outside the gage section, power-law creep in the tensile specimen is considered in the analysis. Using a particular grade of advanced ceramics as an example, it is found that if the specimen is not designed properly, significant creep deformation and stress redistribution may occur in the head of the specimen resulting in undesirable (delayed) head failure of the specimen during the creep test.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stress analysis of all-ceramic three-unit dental bridges ‌using finite element method

Stress analysis of all-ceramic three-unit dental bridges ‌using finite element method M.F. Biria *- Dr. F. Farahmand** - Dr. Gh. Eslami Amirabadi*** *- M.S in Biomechanics Engineering Faculty of Mechanics. Sharif Industrial University. ** - Associate professor of Mecanical Engineering Dept. Sharif Industrial University. *** - Assistant professor of Orthodontics Dept. Faculty of Dentistry Shahed...

متن کامل

Finite element modelling of creep deformation in fibre-reinforced ceramic composites

The tensile creep and creep-recovery behaviour of a unidirectional SiC fibre-Si3N4 matrix composite was analysed using finite element techniques. The analysis, based on the elastic and creep properties of each constituent, considered the influence of fibre-matrix bonding and processing-related residual stresses on creep and creep-recovery behaviour. Both twoand threedimensional finite element m...

متن کامل

Finite element simulation of pyroplastic deformation, anisotropic shrinkage and heterogeneous densification for ceramic materials during liquid phase sintering process

Pyroplastic deformation is a distortion of the ceramic shape during the sintering process. It occurs because the flow of the vitreous phase at high temperature and the applied stress due to the weight of the product during sintering process. The aim of this paper deals with describing a numerical-experimental method to evaluate the pyroplastic deformation, to predict the anisotropic shrinkage a...

متن کامل

Optimum Design of Liquified Natural Gas Bi-lobe Tanks using Finite Element, Genetic Algorithm and Neural Network

A comprehensive set of ten artificial neural networks is developed to suggest optimal dimensions of type ‘C’ Bi-lobe tanks used in the shipping of liquefied natural gas. Multi-objective optimization technique considering the maximum capacity and minimum cost of vessels are implemented for determining optimum vessel dimensions. Generated populations from a genet...

متن کامل

Design of Broaching Tool Using Finite Element Method for Achieving the Lowest Residual Tensile Stress in Machining of Ti6Al4V Alloy

The aim of this study, is to use finite element simulation to achieve the optimal geometry of a broaching tool that creates the lowest tensile stress at the machined surface of the Ti6Al4V alloy. It plays a major role in reducing production costs and improves the surface integrity of the machined parts. The type and amount of residual stress determined by the thermal and mechanical loads transm...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 102  شماره 

صفحات  -

تاریخ انتشار 1997